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A systematic investigation of the systems M—Nb-S and
M-Ta-S (M=Mn, Fe, Co, Ni) revealed the presence
of the compounds MNb;Ss and MTa:Ss. Their struc-
tures were determined from powder diagrams. They
proved to have a superstructure, derived from the
2s-NbS; type and resulting from an ordered distribu-
tion of the metal atoms M over the octahedral holes
between the prismatic NbS, layers. The magnetic
susceptibilities were measured; all the compounds
showed a temperature-dependent paramagnetism with
a spontaneous localized moment.

Introduction

An investigation of ternary transition-metal sulfides
Cu,NbS;and Cu,TaS; (x~0.4-0.67) showed that the
additional copper atoms are statistically distributed
over the tetrahedral holes between the prismatic sulfur
layers, which are characteristic of NbS; 'and TaS,.!??
This finding prompted us to investigate the behaviour
of the elements Mn, Fe, Co, and Ni in the layer struc-
tures NbS; and TaS;; it appeared that well-defined
compounds MNb;Scand MTa;S¢ are formed, in which
M is the first-row transition element. Their structural
and magnetic properties were studied.

Experimental Section

Preparation. All the samples were prepared by
heating weighed quantities of the elements in evacuated
quartz tubes for one day; after crushing, the samples
were reannealed at the same temperature for three days
and cooled slowly.

Identification. From the change of cell dimensions
of NbS; and TaS; observed on Guinier photographs it
was concluded that the extra metal atoms M could be
inserted in the empty octahedral interstices in the NbS,
and TaS, lattice to give new compositions M,NbS: and
M, TaS;, with x ranging from O to ~1/3. In the range
x=0.30-0.33 a single phase was detected with extra
reflections pointing to a superstructure. The com-
position x=1/3 was chosen for further detailed work,
because at this degree of filling one of the three possible

(1) F. Jellinek, Arkiv Kemi, 20, 447 (1963).
(2) K. Koerts, Acta Cryst., 16, 432 (1963).
(3) J. M. van den Berg, J. Less-Common Metals, 13, 363 (1967).

crystallographic positions available for the extra metal
atoms can be fully occupied, thus giving well-defined
compounds MNDb;S¢ and MTa;S,.

Crystal Data. The compounds MNb;S, and MTa;Ss
could be indexed on a hexagonal lattice. The unit cell
proved to be a supercell of the 2s-NbS, modification
with an axis aV3 and about the same c-axis as that
of NbS; and TaS,. The cell parameters were determin-
ed from Guinier photographs calibrated with KClI,
using a least-squares calculation. They are listed in
Table I. The unit cell contained the formula unit
M;(Nb or Ta)sS1, and the space group was found to be
P 6;22 or P6:/m. As the rather strong additional
reflections are caused by an ordering of the extra metal
atoms and the space group P 6,22 showed a better pos-
sibility for an ordering of these atoms than P 6;/m, the
former was chosen.

Solution and Refinement. The intensities were
measured from powder diffractograms. To obtain
random orientation the substance was mixed with dry
Canada balsam. Only the observed peaks which could
be indexed unambiguously were used in the refinement.
From the crystal data and the positions in 2s-NbS; the
following initial positions were assumed:

128 in x, y, z (12 i) with x=1/3, y=0, z=3/8
4 Nby(Ta)) in 1/3, 2/3, z (4 f) with z=0
2 Nby(Tau) in 0, 0, 0, (2a)

2M in 1/3, 2/3, 1/4 (2c) or 2/3, 1/3, 1/4 (2d) or
0, 0, 1/4 (2b)

Considering that the extra reflections point to a super-
structure, there are three possibilities for the position
of the atoms M: 2c (=2d) or 2b, or a statistical
distribution over 2¢ and 2b. Calculation of the struc-
ture factors for the different possibilities showed that
the best fit to experimental data could be obtained for
2 M in (2¢), and this one was used in the least-squares
refinement. The results are listed in Table II.

The shifts of the x- and y-parameters were not
significant. The R factor was calculated for all the
structure factors observed. Experimental and calculat-
ed structure factors are listed in Table VII.

In order to justify a unique conclusion that only (2c)
is occupied, we tried the following procedure.* By

(*) The statistical analysis was kindly performed for us by J. Meisner.
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Table I. Cell dimensions with standard deviations

a c a c
MnNb;S, 5.782 (0) 12.629 (0.001) MnTa;Ss 5.757 (0) 12.697 (0.001)
FeNbS:Se 5.766 (0) 12.212 (0.000) FeTa,S, 5.739 (0) 12.289 (0.001)
CoNb,Sq 5.768 (0) 11.886 (0.001) CoTa;Ss 5.740 (0) 11.932 (0.000)
NiNb;Ss 5.758 (0) 11.897 (0.000) NiTa,S, 5.737 (0) 11.942 (0.001)
25-NbS; 574=a\/3 11.89 25-Tas, 574=ay/3 12.10

Table fl. Atomic parameters with standard deviations

x(S) ¥(S) z(S) z(Nby) B R(%)
MnNbS, 0.333 0 0.375 (0.002) —0.001 (0.001) 1.20 (0.19) 17.9

FeNb,;Ss 0.333 (4] 0.375 (0.002) —0.002 (0.001) 0.60 (0.34) 16.9
CI:]NbJSG 0.333 0 0.370 (0.002) —0.003 (0.001) 0.38 (0.14) 11.3
NiNb,Ss 0.333 0 0.365 (0.001) —0.001 (0.001) 0.11 (0.06) 5.0
MnTasSe 0.333 4] 0.375 (0.004) —0.000 (0.005) 0.76 (0.33) 6.7
FeTa,S, 0.333 0 0.371 (0.002) —0.003 (0.002) 0.65 (0.28) 3.7
Cc_:Ta:Sa 0.333 0 0.366 (0.003) —0.002 (0.002) 0.10(0.38) 9.1
NiTa;Ss 0.333 0 0.369 (0.002) —0.003 (0.001) 0.83 (0.22) 6.2

Table Hl. Occupation numbers with standard deviations

x (2¢) x (2d) x (2b)
MnNb;S, 0.272 (0.071) 0.008 (0.070) 0.050 (0.129)
FC‘NbJSﬁ 0.190 (0.160) 0.000 (16.10°%)  0.140 (0.310)
NiNb,S, 0.212 (0.075) 0.046 (0.072) 0.072 (0.136)
MnTa,S, 0.250 (0.110) 0.050 (0.110) 0.030 (0.200)
FeTa,S, 0.172 (0.089) 0.000 (89.10%)  0.158 (0.153)
C(?Ta;& 0.213 (0.080) 0.048 (0.078) 0.069 (0.144)
NiTa,S, 0.259 (0.085) 0.013 (0.84) 0.058 (0.154)

introducing the occupation number x for the extra
metal atoms M over the three positions (2c), (2d), and
(2b) and subsequent least-squares refinement we follow-
ed the behaviour of x. This attempt failed because dif-
ferent minima could be calculated for x. The final
R values were slightly larger (about 2-5%) than those
in Table II for (2¢) fully occupied, but no unique
conclusion could be drawn. We therefore did a
statistical calculation assuming that the sum of the
occupation numbers is 1/3. The results in Table 1]
show that our initial assumption of x (2c¢)=1/3 is a
reasonable one in most cases.* For some unknown
reason the calculation was unsuccessful for CoNb;Se.
Meanwhile we succeeded in isolating single crystals
of some of the compounds. The preliminary results
of analyses of these crystals completely support the
ordering of M in (2¢).**

Magnetic Measurements. The magnetic susceptibi-
lities were measured on powder samples in a tem-
perature range 100-1000 °K at different field strengths
using the Faraday method. For compounds which
showed a field dependence due to ferromagnetic
impurities, the measured values werc extrapolated to
infinite field strength; otherwise the values were
averaged.

(*) Neutron diffractions carried out by the University of Leyden and
R. C. N. Petten also support this conclusion according to discussion
remarks made by D. J. W. Ydo and B. ven Laar at the Second Inter-
national Conference on Solid Compounds of Transition Elements,
Enschede, June 12-16. 1967.

(**) Results will be published elsewhere.
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Results and Discussion

Structures. When the disulfides in question are
combined with extra metal atoms of the first-row trans-
ition elements these atoms are inserted into the octa-
hedral holes between the layers of the 2s-NbS; type
compounds (NbS; and TaS;. The compounds MNb;Ss
and MTa;S, have one third of the available octahedra
occupied. In the discussion we assume that position
(2c) is fully occupied. The ordering of the metal atoms
in the (001) planes is drawn in Figure 1. In Figure 2
we .see that linear NbyMNb; and TaiMTa; groups are
formed along the c-axis. As expected, the Nb; and Ta;
atoms are shifted slightly to the vacant octahedra.

X 100174 }\-cu.y OCTAMEDRAL MOGIM ATOMS, OCCUPYING THE PRISMATIC HOLES
Aoy a HOLES ABOVE AND BELOW ALL THE OCTAMEDRAL MOLES,
.n.u/sz/sm) ARE (MY TED
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Figure 1. Ordering of the metal atoms.

The distances indicated in Figure 3 are listed in
Table IV. From Tables I and I1I we see that the cell
axis a is determined by the sulfur contacts (3) and the
niobium and tantalum distances in the prismatic slabs.
The c-axis is determined by the intermetallic M—Nb or
M-Ta distance and the M-S distance; Mn and Fe
expand the lattice, while Co and Ni have little influence
on the NbS; lattice and even contract that of TaS,.
This influence on the lattice is mainly reflected in the
S-S distances (5) between the prismatic layers. The
M-S distances decrcase in the order Mn, Fe, Co, Ni.
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Figur 2. Diagonal section (110) of MNb;(Ta;)S, (arrows
indicate deviations from the ideal positions).

Figure 3. Interatomic distances calculated.

Table V. Interatomic distances
2S‘Nsz Man356 Fer]Se CONb;Sb Nle;Ss

M-S (2.42) 2.491 2454 2394 2.357
M-~Nb; (2.97) 3.170 3.077 3.008 2984
Nb;,—S 247 2,491 2.454 2.467 2502

Nb,—S(1) 247 2.483 2.493 2.445 2494
Nb;—S(2) 247 2.499 2470 2.489 2510

Nb;~Nbu 3.31 3.338 3.329 3.330 3.324
S-S(3) 3.14 3.157 3.053 3.091 3.210
S—-5(4) 3.31 3.338 3.329 3.330 3.324
S—5(5) 340  3.699 3.607 3441 3.341

25'T3$1 MnTa;Sa FeTa;Ss COT&;S‘ NiTa,S‘

M-S (2.44) 2,488 2.423 2.361 2.380
M-~Ta, (3.03) 3171 3.108 3.007 3.019
Tay-S 244 2.488 2.484 2493 2.468

Ta,—S(1) 244 2.488 2.461 2478 2.446
Ta,—S(2) 244 2488 2.508 2.509 2491
Ta;—Tan 3.32 3.322 3.314 3.314 3.310

S-~5(3) 3.03 3.171 3.170 3.198 3.126
S—-S(4) 3.32 3.322 3314 3.314 3.310
§-8(5) 3.58 3.706 3.535 3.365 3.422

Figure 4 shows that the occupied octahedral holes
share faces with the occupied prismatic holes, resulting
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in short intermetallic distances. This points to inter-
metallic bonding between the two different metal
atoms, which apparently plays an important role in the
stability of this type of compound. We may compare
them with the structure of Cu2/3NbS; and Cu2/3Ta$,,
which have one third of the tetrahedra occupied in a
statistical distribution (Figure 4). The preference of
Cu for tetrahedral co-ordination and of Mn, Fe, Co, and
Ni for octahedral co-ordination together with their
tendency to intermetallic bonding with Nb or Ta may
explain why copper compounds of NbS, and TaS,
change into the 2s-MoS; type, while the other com-
pounds preserve the 2s-NbS; type; in 2s-MoS; it is the
tetrahedra and in 2s-NbS; the octahedra which are just

- above the occupied prismatic holes.

Qs

QW @ CAaM TE TRANEDRAL SURROUNDINGS

Figure 4. (a) Diagonal section (110) of MNb;(Ta;)S, with
sulfur surroundings. (b) Diagonal section of Cu,NbS, (=
(110) section of 2s-MoS,).

Magnetism. Plotting the experimental susceptibilities
Xmol against the reciprocal temperature T-!, we found
that the y values showed a linear dependence at tem-
peratures above ~ 350 °K (Figure 5). This points to
a normal Curie-Weiss behaviour with rather low values
of 0, which causes a deviation from the linear curve
at lower temperatures.

From an observation of the resulting curves it is
immediately clear that in many instances a positive
temperature-independent component will remain at
infinite temperature, which in some cases even adopts
an unusually high value we take into account that
diamagnetic corrections have not yet been introduced
in the curves shown.

An obvious method to analyse magnetic data such as
the ones obtained here is to try whether the susceptibi-
lity can be described by a formula

Cu

Anot = Am + T—o

Such an analysis gives inherently large uncertainties
in Am and 8, but a reasonable first approximation can
be obtained for Cm.
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The values of Cu, 8 and Ay in Table V have been
obtained by using a least-squares anlysis of the suscep-
tibilities at 273°K and higher temperatures. It appeared
that in a number of instances the values of y at lower
temperatures, especially liquid-nitrogen temperatures,
were not easily incorporated in the series of measure-
ments at higher temperatures. Therefore these points
have been omitted systematically, which seems justified
in view of the fact that magnetic interactions and the
influence of impurities are becoming more important at
lower temperatures. Considering the values of 6, all
compounds are antiferromagnetic except those with
manganese.

reasonably approximated.

It is interesting to compare these compounds with
the disulfides; NbS; shows a weakly temperature-
dependent paramagnetism of the order of 0.1x1073,
pointing to Pauli paramagnetism.* Evidently the
interaction of the new metal atoms with a pair of
niobium (or tantalum) atoms in adjacent layers causes
the formation of a centre {NbMNb} or {TaMTa} where
localized electrons can be stored, accompanied by a
rearrangement of the electrons in niobium (and
tantalum) layers.

We arrive at the following assignment for the
valencies and configuration of the inserted transition

Table V. Magnetic parameters for x=1/3 with standard deviations

Au (1073 c.g.:5.) 8 (°K) p=1/8Cx
MnNb,S 0.48 (0.07) 2.88 (0.03) 68 ( 3) 4.80
FeNb;S, 0.33 (0.03) 2.39 (0.02) — 67(6) 4.36
Cng;Se 0.82 (0.01) 0.55 (0.01) — 72( 4) 2.09
NiNb,S 0.21 (0.02) 0.44 (0.01) —21(9 1.87
MnTa;S, 0.29 (0.20) 2.91 (0.06) 112( 4) 4.82
FeTa,S 0.30 (0.05) 2.65 (0.02) — 11( 3) 4.60
CQTaJSg —0.32 (0.02) 1.72 (0.02) —136 ( 5) 3.7
NiTa;S, —0.59 (0.03) 1.11 (0.01) —190 (10) 298
Table VI. Magnetic parameters of M,,NbS,

Aw (103 c.gs)) (] =/ 8Cx
MnNb:S;e 0.05 (0.02} 3.22 (0.04) 126 ( 3) 5.08
FeNbsS:o —0.13 (0.13} 2.67 (0.07) 50 ( 8) 4.62
CoNDbsSis 0.83 (0.01) 0.69 (0.01) — 95( 4) 235
NiNbsSi 0.11 (0.02) 0.48 (0.01) — 44 (10) 1.95

We realize that this is a rather rough approximation elements:

(for example, by doing so we neglect the possibility of Mn in NbS;  Mn** high spin d"

a temperature-dependent magnetic moment) and Table
V certainly does not pretend to cover the only solution.
If impurities are present which mainly influence the
low-temperature measurements, and consequently the
curvature in that region, the extrapolation on the other
side of the curve where Ay is important becomes very
uncertain.

That we are indeed also concerned with this kind
of effect in the present case is demonstrated by the
influence of small variations in the preparative proce-
dures, which cause changes in 8 and rather drastic
ones in Am. For further confirmation we carried out
a series of measurements on the systems MNbS; with
x=0.2, which could be obtained more easily. Long
reaction times were needed for the compounds with
x=1/3 to pass into the ordered modification. Com-
paring the results listed in Table VI with those of
Table V, we found that Au approximated the dia-
magnetic correction (~0.5X107*) more closely in a
number of cases, where the temperature and reaction
time during preparation were lower. Only in the
system Co:NbS, did the excessively large Am value
persist. This suggests that reaction of the samples with
the silica tubes is responsible for impurities, which is
reflected most clearly in Au. Of course, this is also
reflected in Cum, but its value is less sensitive to the
uncertainties mentioned and can in most cases be
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Fe in NbS; Fe** high spin d°
Co in NbS, Co'* low spin d’
Ni in NbS, Ni’* low spin d’
Mn in TaS, Mn’* high spin d*
Fe in TaS, Fe** high spin d*
Co in TaS, Co™ high spin d’
Ni in TaS; Ni?+ d*

Judging from this evidence, only Mn can attain the
trivalent state in both NbS, and TaS, compounds,
whereas the other elements are incorporated as M**.
If Mn becames trivalent the centres can be described
as Nb** M3+ Nb** (or Ta’* M¥* Ta*) with Nb** and
Ta'* in the diamagnetic state as observed in the iso-
electronic MoS,. With M** the same centres are found.
However, the third Nb (or Ta) which is not coupled to
inserted metal atoms remains in this way formally
quadrivalent. The fact that only Mn is trivalent in
both NbS, and TaS; compounds may be seen in the
light of its lower ionization potential for d-electrons.
The only exception seems to be Ni which in the NbS,
compound is incorporated as Ni**. In this connection
it is of interest to note another difference: Co and Ni
are in a high-spin state in the TaS; compounds and in
a low-spin state in the NbS; compounds. As matters

(4) C. F. van Bruggen and F. Kadijk, private communication.
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Table VII. Experimental and calculated structure factors
Mab, S, PeNb, 8¢ CoNb,3g NiNb,S¢ MoTaySg PeTay S CoTa,8¢ NiTa,S¢
"hkl F~ 4pxF hkl P dpxF, |hkl P VpxF hkl P 4pxF, bkl P JpxF [hkl F pxP [nxi P VpxPnkl P dpxF

100 86 %4 100 56 67 |t 00 50 47 100 46 85 101 126 T4 |1 00 47 59 |1 00 51 51 100 57 8u
1ot 138 158 |v o1 17 55 |1 o1 13 105 |1 01 166 200 102 96 96 |10 118 128 [1 01 00 ne 101 157 182
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103 180 155 |1 03 163 168 [to3 134 123 (103 196 193 [c o4 469 431|103 178 e [ro3 8 135 103 215 235
110 hu2 482 v 10 W 482 110 33 33 |1 10 626 594 (110 868 968 (004 357 30 |co4 343 309 |00 4 494 W7
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Accolades: overlapping reflections.

stand, with the difficulties possibly related to impur-
ities, we do not feel justified in attempting a more

detailed description.

We hope that measurements on

single crystal samples will throw more light on this

matter.
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